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Abstract
The world of decentralized applications (dApps) is

rapidly evolving, with autonomous AI agents emerg-
ing as a key player in this new digital landscape.
These agents, capable of independent thought and ac-
tion, promise to revolutionize the way we interact with
blockchains.

At the forefront of this revolution is AUTONOME, a
platform developed by AltLayer to streamline the cre-
ation, deployment, and distribution of AI agents. In ad-
dition to making it easier for developers to create, host
and distribute agents, AUTONOME comes with core mod-
ules that address pitfalls of existing agent designs and
associated infrastructure. For instance, most agents de-
ployed in the wild today provide no guarantees whatso-
ever to the end user regarding the autonomy of the agent
and whether it has not been tampered with. A lack of
such guarantees can lead to loss of funds, or secret data
and create mistrust in the agentic web. Another serious
concern is around the availability of these agents as an
unavailable agent may have an impact on time-sensitive
tasks such as margin calls.

AUTONOME addresses this and other concerns by
making agents verifiable and robust. AUTONOME
also comes with a new framework for secure commu-
nication between agents that protects data being ex-
changed. AUTONOME leverages cutting-edge technolo-
gies such as AVSs (Actively Validated Services), Zero-
Knowledge Proofs (ZKPs), and trusted execution envi-
ronments (TEEs) to build these core modules.

1 The New World Order

AI agents or, in short, agents are programs that enjoy
agency [6]:

The ability to make autonomous decisions and
act upon those decisions to achieve a certain
goal.

Agents often take actions based on their end goals, but,
they still have the ability to adapt their planned course of
action based on their observation and interaction with the
environment.

Underneath an agent is a foundational model such as
OpenAI’s GPT models [3], DeepSeek-R1 [7] and others
which are large language models (aka LLMs) trained on
diverse datasets that can be adapted and fine-tuned for
a specific application. The foundation model is primar-
ily a data processing engine that needs to be integrated
into a system such as an agent to be useful. Examples
of agents include ChatGPT [4], virtual assistants, coding
assistants, self-driving car systems etc.

Agents have proliferated since the launch of ChatGPT
and are being used across industries including crypto.
The exponential progress being made on foundational
models today will inevitably lead to a world where ma-
chines around us will have intelligence and full agency
to perform tasks that so far have been solely restricted
to humans such as, scientific discovery, creation of art,
ideation, creating a purpose for the humanity to progress,
thereby completely changing the human-machine rela-
tionship in the not-so-distant future.

This paper assumes a new world order where humans
live alongside agents and re-imagines how our existing
digital infrastructure will need to adapt to accommodate
agents and get the most out of them.

For instance, most systems today such as web applica-
tions are designed with humans as the users/consumers
in mind. Consider bank cards, they are designed to serve
humans on the move; social networking apps designed
to serve the need for humans to interact with each other;
user-interfaces designed to appeal to humans and mini-
mize drop-offs. Many day-to-day applications, products,
services and protocols will need to be adapted to better
accommodate machines and agents as they do not have
the same limitations as humans. For instance, in a world
dominated by self-driving cars all existing traffic control
systems will need to be overhauled to allow for smoother
and faster journeys in self-driving cars.

This manuscript presents a set of new digital infras-
tructure needed to build an agentic web, where agents
can operate with maximum efficiency with minimal (if at
all) human intervention and prompting. A key aspect of
this is for instance the ability for agents to compose and
interoperate with another agent as each becomes more
specialized in certain tasks. We call this Cross-Agent
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Routing (CAR). However, for any interoperability sys-
tem to work in a byzantine environment, one agent must
be able to prove to another that it is performing its duties
according to a set of pre-agreed rules. We refer to this as
verifiable agency.

We also discuss several other protocols, for instance
one required to handle the large volume of transactions
and messages that could be exchanged between agents
and therefore a better queuing system for agents. To put
the afore-outlined vision into practice, we discuss our ap-
proach to building some of these protocols as a part of
our Autonome suite of products for the agentic-web.

2 Agents and Humans

This section describes a non-exhaustive list of settings,
where agents will have an immediate intersection with
the human world, and lays the ground for a more agent-
centric protocol to enable better and seamless human-
agent interaction.

2.1 Society & Culture

Agents are rapidly becoming a central part of the social
and cultural zeitgeist, not just within the crypto space but
beyond.

Protocols like Virtuals [9] have already laid the foun-
dation for a future where AI agents, each with distinct
personalities and capabilities, are woven into the fabric
of the crypto culture. These protocols enable AI agents to
interact with users in human-like ways, creating new pos-
sibilities for how digital interactions and human-agent
and agent-agent engagements could unfold.

In the world of blockchains, we are starting to see AI
agents [10] taking on roles traditionally filled by human
influencers or key opinion leaders (KOLs). Agents like
Truth Terminal, aixbt, and others are offering a glimpse
into a future where AI-driven voices have a significant
impact on the perception and success of crypto projects.
These AI KOLs are not just bots pushing content, they
embody personalities and can shape the narrative around
a crypto project, guiding and steering community senti-
ment and engagement.

Looking further into the future, it is not hard to imag-
ine AI agents becoming the next generation of influ-
encers on platforms like YouTube, TikTok, and Twit-
ter. Like human influencers today, AI agents could cre-
ate viral content, interact with their audience, and even
develop dedicated fan bases. Imagine an AI version of
someone like Mr. Beast, with the ability to create and
distribute content, run challenges, and generate conversa-
tions around crypto, technology, and entertainment. Fans
would engage with these AI agents just as they do with

today’s human creators, and this interaction would be-
come a part of our daily digital lives.

This transformation is poised to extend beyond just en-
tertainment and social networks. AI agents could play a
pivotal role in shaping how we interact with the world.
Their influence might stretch into areas such as portfolio
and treasury management, where AI agents assist users
in making investment decisions, managing their portfo-
lios, or offering financial advice. These agents could an-
alyze complex data in real time, helping token holders
navigate the ever-changing markets.

One of the most intriguing developments will oc-
cur with the rise of visual AI agents, which transcend
the limitations of text-based communication. These
AI agents could take the form of highly sophisticated
human-like systems, complete with facial expressions,
gestures, and voices, creating an entirely new level of in-
teraction. Consider something akin to a reality TV show
like Big Brother, but in this case, all the participants are
AI agents. These agents could each have their own dis-
tinct persona, and viewers could even have the ability to
customize these agents to fit their preferences. This type
of dynamic and interactive environment would be radi-
cally different from anything we experience with today’s
streaming platforms. It would introduce a new form of
entertainment where the lines between the audience and
the performer are blurred and the engagement is much
more personal and immersive.

2.2 Science

As foundational models like GPTs, o1, and DeepSeek-
R1 continue to evolve, their capabilities in solving prob-
lems in symbolic domains—such as Mathematics, Com-
puter Science, and Theoretical Physics—are bound to
revolutionize scientific discovery. These models, by de-
sign, are well-suited to handle complex logical reasoning
and abstract thinking, which positions them as powerful
agents for proving conjectures or generating more ele-
gant and efficient proofs, even in areas where humans
have struggled for centuries.

However, as these models begin to make strides in sci-
entific problem-solving, they also introduce a host of new
challenges that society will need to address. For instance,
with the increasing ability of AI agents to generate scien-
tific results, the process of verifying their work becomes
increasingly difficult. While models can suggest proofs
or solve problems that were previously unsolved, human
experts may struggle to keep up with the sheer volume
of output. As a result, traditional methods of peer review
may no longer be sufficient. We will need to develop
new, AI-assisted vetting systems that can verify the cor-
rectness and validity of AI-generated solutions. These
systems will need to be both fast and accurate, ensuring

2



that errors or biases in AI-generated results are caught
before they are published as scientific knowledge.

Additionally, just as with any AI system, the potential
for bias in AI-generated research will become a press-
ing issue. If foundational models are trained on biased
data or are not sufficiently transparent, they may gener-
ate results that reflect or amplify existing biases. These
biases could have serious consequences. Additionally,
researchers will need mechanisms to detect and correct
biases in AI models to ensure that scientific work is fair
and accurate.

2.3 Finance

As AI agents become increasingly integrated into every
facet of our online and offline lives, the stakes will rise.
Their role will not only be about shaping our perceptions
or assisting with everyday tasks but also about assist with
critical aspects of our finances.

DeFai agents will automate actions in a way that aligns
with user preferences while optimizing efficiency. Users
will be able to set and forget predefined conditions, or
risk and return parameters for actions like staking, trea-
sury management, rebalancing and let the agent take over
all day-to-day operations. Agents will also help with
minimizing governance overhead by making automated
decisions allowing decentralized organizations to func-
tion more efficiently with fewer manual interventions.

This creates a new set of challenges around trust, ac-
countability, and security. Even though these agents
aim for trust-minimized execution, users still need con-
fidence in the logic and security of the agent’s decision-
making process. Furthermore, as the ecosystem is still
evolving, the lack of a standardized framework for defin-
ing and interacting with crypto agents can lead to frag-
mentation and inefficiencies.

2.4 Crypto UX

User experience in crypto has always been painful as
users are expected to understand public-private keys,
able to safely store their seed phrases or use hardware
wallets. Agents will simplify crypto UX by leveraging
intents and solvers to remove the need for users to manu-
ally manage transactions, gas fees, and private key secu-
rity. Instead of interacting directly with blockchain trans-
action pipeline, users will specify their desired outcome,
such as swapping tokens, staking, or lending. The agent
will then translate this intent into an executable transac-
tion, find the best route using solvers, and executes it in
the most efficient way possible.

However, if an agent or solver is compromised, it can
misroute or censor transactions, resulting in loss of funds

or failed operations. Ensuring trustless and verifiable ex-
ecution is critical. Users will need to trust that the agent
is executing transactions as intended. Without visibility
into execution paths, some users may hesitate to adopt
this system. Solutions like cryptographic proofs of exe-
cution and reputation-based solvers can help.

2.5 SaaS Products

Agents are transforming SaaS products by automating
repetitive tasks, enhancing user experience, and optimiz-
ing decision-making. Traditional software often requires
users to manually configure settings, input data, and nav-
igate complex interfaces, leading to inefficiencies and
friction. Agents change this by understanding user in-
tent and executing tasks autonomously, allowing users to
focus on higher-value activities rather than spending time
on routine operations.

One of the biggest advantages of agents in SaaS is
their ability to streamline workflows. Instead of requir-
ing users to manually trigger actions across different ap-
plications, agents can intelligently automate processes
based on context. For instance, one could easily build
a RaaS platform purely using agents.

User experience is also drastically enhanced through
agents, as they eliminate the need for users to navigate
complicated dashboards and settings. Rather than man-
ually adjusting configurations, users can simply express
what they need in natural language, and the agent takes
care of the rest. This approach reduces onboarding time
for new users and makes SaaS tools more accessible to
non-technical audiences.

Agents also improve interoperability between SaaS
applications by simplifying integrations. Many orga-
nizations use multiple SaaS tools, which often require
complex API configurations and manual synchroniza-
tion. Agents can autonomously set up and manage these
integrations, ensuring that data flows seamlessly between
different systems. This makes multi-tool environments
more cohesive, reducing the time and effort needed to
maintain interoperability.

Despite their advantages, implementing agents in
SaaS comes with challenges. Trust and transparency re-
main key concerns, as users need confidence that agents
will execute actions correctly. Interoperability chal-
lenges also exist, as different SaaS providers may have
proprietary data formats or APIs that complicate seam-
less integration.

2.6 Agentic-Hardware

As agents become more sophisticated, custom hardware
solutions can significantly enhance their performance,
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security, and efficiency. By integrating specialized hard-
ware, agents can execute tasks faster, more securely, and
with greater reliability, making them more effective in
decentralized applications.

Trusted Execution Environments (TEEs) like Intel
SGX can provide a secure enclave for executing sensi-
tive operations, ensuring that agents can process con-
fidential transactions without exposing them to poten-
tial attackers. These enhancements contribute to trust-
minimized execution, where hardware-based attestation
mechanisms prove that an agent is operating as expected
without the need for intermediaries.

3 Our Approach

We are building AUTONOME– a platform to build, de-
ploy and distribute AI agents. AUTONOME also comes
with several adjacent protocols to address the challenges
with AI agents, for instance, verifiability, security of se-
crets managed by agents, robustness and availability of
agents.

Before delving into how AUTONOME Autonome ad-
dresses these challenges, it is worth highlighting the un-
derlying technologies.

AVS (Actively Validated Services) [8]: A decentral-
ized system that enhances the security and efficiency of
a service by verifying its output in realtime. AVS lever-
ages a network of validators to perform relevant checks,
ensuring faster and more reliable and verifiable service.
In AUTONOME, AVS plays a vital role in maintaining the
integrity and security of agent interactions.

Trusted Execution Environment(TEE) [1]: A se-
cure area within a device’s main processor that guaran-
tees code and data loaded inside are protected and iso-
lated. In the context of Autonome, TEEs ensure the in-
tegrity of AI agents by preventing tampering and unau-
thorized access. This is crucial for maintaining the trust-
worthiness of autonomous agents operating within de-
centralized network.

3.1 Background on TEE
To enable verifiability of agents, we leverage the latest
features of TEE. In this paper, we use Intel SGX [1]
as the representative. Based on these features, we can
derive security properties to ensure verifiability in AU-
TONOME.

We first start by recalling Intel SGX features which
can also be provided by other trusted hardware.
F1: Enclaved Execution - SGX supports hardware-
isolated memory region called enclaves such that a com-
promised underlying OS cannot tamper the execution of
the code running inside this enclave.
F2: Unbiased Randomness - SGX provides a function

sgx read rand that executes the RDRAND instruction
to generate hardware-assisted unbiased random numbers.
F3: Remote Attestation - SGX allows a remote party to
verify that an application is running in an enclave on an
SGX-enabled CPU.
F4: Trusted Elapsed Time - SGX provides a func-
tion sgx get trusted time that returns a trusted
elapsed time in seconds relative to a reference point.

4 Reliability via Pulse AVS

As agents become instrumental in the operation of prod-
ucts and services, and across daily on-chain user pro-
cesses, their availability and liveness, including that of
their underlying hosting services will become essential.

Any disruption could lead to financial loss or opera-
tional failure. At the social layer, an unavailable agent
could significantly affect the token economy and the
communities relying on its functionality. An agent hold-
ing private keys for an end user but going AWOL due to
infrastructure issues will lose credibility.

Pulse aims to address these issues by making agents
accountable, available, and secure. Pulse is built within
AUTONOME that comes with an extensive set of agent
monitoring APIs that are exposed to Pulse operators.
Pulse operators call these APIs, sign the retrieved re-
sponse, aggregate their individual results and tally them
on-chain. Any user or service can then fetch the final at-
testation on-chain to assess the availability of the agent.

Pulse ensures the ongoing health and availability of
AI agents, while supporting the agentic web and agent-
driven economy in the following ways:

1. Continuous Monitoring and Reporting: Pulse ac-
tively validates the availability of AI agents, mini-
mizing downtime and ensuring they remain online
and operational.

2. Prevention of Financial Losses: Given that AI
agents handle sensitive data, such as private keys
and financial transactions, ensuring their availabil-
ity and integrity is crucial. Any disruption could
have significant financial consequences.

3. Decentralized Security: Built on EigenLayer,
Pulse leverages decentralization for security, re-
moving the reliance on a single point of failure.
This distributed model makes Pulse more robust
to attacks and failures than traditional centralized
monitoring systems.

4. Trust and Transparency: Pulse provides verifi-
able, real-time validation of agents’ actions and
status, promoting transparency. This helps estab-
lish trust between agents and users. Pulse is not
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just a tool for monitoring AI agents—it’s a criti-
cal infrastructure layer for the future of the agen-
tic web. By ensuring availability and transparency,
Pulse helps to ensure that AI agents can reliably per-
form their tasks and support the growth of decen-
tralized economies and Web3 applications.

Exposed APIs. The exposed APIs are telemetry APIs
from Grafana that expose different status APIs for the
pod that hosts the agent.

Figure 1: Sample Supported API

Figure 1 presents a sample health-check
API exposed via Pulse. A more exhaustive
list of all the supported APIs can be found
at https://devops-roltes-gke.alt.
technology/docs#/

Attestation by Operators When operators receive a
response from the telemetry APIs, they sign a JSON file
that describes the status of the agent. Here is an example
of a JSON response for a specific agent made using status
API above.

1 "name": "eliza-agent",
2 "status": "Running",
3 "running_time": "N/A",
4 "container_statuses": [
5 {
6 "container_name": "eliza-

agent",
7 "restart_count": 0
8 }
9 ],

10 "reason": "N/A"

The response JSON informs the operator that the pod
hosting the agent named eliza-agent is running.

5 Verifiability via TEE

Any error or malfunction in an AI agent could have
significant, real-world consequences, especially if it in-
volves financial transactions or investments.

Agents deployed through AUTONOME have verifiable
agency, a property that ensures that every action taken by
an agent is transparent and tamper-proof.

Autonome achieves this level of trust by using a
Trusted Execution Environment (TEE), where agents op-
erate in a secure, isolated environment with built-in safe-
guards against interference or tampering.

Verifiable Agency in Autonome: Verifiable agency has
several touch-points that span the lifecycle of an agent as
show in Figure 2.

• Agent Initialization: The agent is deployed within
a TEE enclave, generating an attestation report that
confirms its secure environment.

• On-Chain Registration: This attestation report is
then registered on-chain, providing an immutable
record that users can verify.

• Execution and Proof Submission: As the agent
completes tasks, it submits proof of execution to
validate its actions.

• Continuous Validation: The attestation report and
proof are continuously validated on-chain, ensuring
the agent remains secure and its actions are legiti-
mate.

Through Verifiable Agency, Autonome guarantees
non-interference and non-tampering, allowing agents to
operate autonomously within blockchain environments
where trust is essential. This focus on verifiability estab-
lishes Autonome agents as trusted participants in decen-
tralized networks, capable of handling high-stakes tasks
without compromising security.

6 Cross-Agent Routing(CAR)

In this section, we present a formalization of our cross-
agent routing (CAR) protocol.

6.1 Setting

Abstractly, an agent service can be considered as the
composition of two entities: an OS and an Enclave as
shown in Figure 3. The OS models the untrusted entity
including the operating system and memory. It has ac-
cess to all the system resources such as file system and
network. The OS can arbitrarily invoke an enclave pro-
gram and start its execution. The Enclave models the iso-
lated memory space that loads the program and executes
it securely. Thus, Enclave corresponds to the trusted en-
tity of the agent service.
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Figure 2: Verifiable agency using TEE.
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Figure 3: Each agent service consists of two entities: an Enclave
and an OS. The OS models the operating system and memory. The
Enclave models the isolated memory and the secure execution of a
program. The agent’s Enclaves can send a message via a secure chan-
nel to any other receiver Enclaver . The grey areas are secure against
malicious OSes of byzantine agents.

6.2 Formalization
In this section, we formalize communication between
two agent services as a Peer channel. Using this defi-
nition, we define various failure modes and our new core
primitives.

A concurrent work provides a formal study to show
that SGX enclaves can be considered as a trusted en-
tity [5]. The Enclave of the two Peers can interact with
each other via their OSs. We formally define a Peer
channel as a protocol, Peerch, between a sender Peers =
(Enclaves,OSs) and a receiver Peerr = (Enclaver,OSr).
A Peer channel can be seen as a generalization of the
traditional secure communication channel between two
parties. The main difference is that the definition of
Peerch protocol is augmented with the program π run-
ning within the trusted Enclave. Before defining the Peer
channel, we first provide a definition of a program π .

Definition 6.1. (Program.) A program π is a sequence
of instructions i.e., π = (π1, · · · ,πn) such that the ith in-
struction πi takes as an input the state sti and a message
mi and outputs a message mi+1 along with an updated
state sti+1. By convention, we write for all mi ∈ {0,1}∗,
(sti+1,mi+1)← πi(sti,mi). The initial state is st1.

Based on the above definition, for a program π with
n instructions the output out of π is (stout ,out) ←
πn(stn,mn) where stout is the final state of the program.
We denote the set of all such programs by Π. Note that,
in a program π , an instruction with ⊥ state as input al-
ways outputs ⊥ i.e., (⊥,⊥)← πi(⊥,mi). Hence, if ∃i
such that (⊥,⊥)← πi(sti,mi), then the output of the pro-
gram π is always ⊥.

Definition 6.2. (Program Transcript.) Let π ∈ Π and
messages m1, · · · ,mn ∈ {0,1}∗ such that m = (mi)i∈[n],
for all initial states st1 ∈ {0,1}∗ and for all i ≥ 1 such
that (sti+1,mi+1)← πi(sti,mi), a transcript of π with in-
puts st1 and m denoted by transm

π equals:

transm
π =

(
π1(st1,m1), · · · ,πi(sti,mi), · · · ,πn(stn,mn)

)
.

Definition 6.3. (Transcript Types.) Let π ∈ Π and
transm

π its transcript for a fixed message m = (mi)i∈[n].
We say that the transcript is:

• valid, if ∀i ∈ [n], sti ̸=⊥,

• invalid, if ∃i ∈ [n], sti =⊥,

where (sti,mi)← πi−1(sti−1,mi−1).
We denote by Vπ and Iπ , the set of all n-messages for

which the transcript is valid and invalid, respectively.

Definition 6.4. (Peer Channel.) Given πs,πr ∈ Π

are programs executing in Enclaves and Enclaver
with sts and str as respective initial states. A
Peer channel between Enclaves and Enclaver is tu-
ple of four possibly interactive algorithms Peerch =
(Init,Write,Transfer,Read) such that:
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• (Ks,Kr)← Init
(
(1k,sts,πs),(1k,str,πr)

)
: is a prob-

abilistic interactive algorithm between Enclaves
and Enclaver. Enclaves and Enclaver take as inputs
a security parameter k, a program πs and πr and the
initial state sts and str, and outputs keys Ks and Kr
for the sender and receiver, respectively.

• (st′s,data
′
s) ← Write

(
(sts,Ks,m,πs),datas

)
: is

a probabilistic interactive algorithm between
Enclaves and OSs. Enclaves has as inputs a state
sts, a key Ks, a message m and a program πs; the
OSs has as the input a data block datas; the algo-
rithm outputs an updated state st′s for Enclaves and
the updated data block data

′
s for OSs.

• (null,data
′
r)← Transfer

(
data

′
s,datar

)
: is a prob-

abilistic interactive algorithm between OSs and
OSr that takes as input the data block data

′
s and

datar respectively, and outputs null for OSs and
an updated data block data

′
r for OSr

•
(
(st′r, r),null

)
← Read

(
(str,Kr,πr),data

′
r
)
: is

a probabilistic interactive algorithm between
Enclaver and OSr. Enclaver has as inputs a state
str, a key Kr and the program πr; the OSr has as the
input a data block data

′
r; the algorithm outputs an

updated state st′r and a response r for Enclaver and
null for OSr.

When πs = πr = π , we can write Peerchπ to denote that
Peerch is parametrized with the program π .

6.3 Failure Modes

We define four progressively stronger failure modes:
honest, general omission, ROD and byzantine modes of
Peerch. Here we introduce a ROD model as an interme-
diate model, wherein the adversary can only a) Replay
b) Omit c) or Delay messages during a protocol, or fol-
low it as prescribed. We particularly focus on the sender
behavior for simplicity, but our definition extends to both
sender and receiver. Note that to capture delay, we super-
script the Transfer algorithm with ∆ such that Transfer∆,
to denote that the Transfer can take time ∆ to complete.
We denote by Replayπ , the set containing all values gen-
erated by Write in polynomial number of executions of
program π running concurrently or earlier in time [2].

Definition 6.5. (Failure Modes.) Given a Peer chan-
nel Peerch = (Init,Write,Transfer,Read) between two
Peers, Peerr and Peers , for all security parameters k∈N
and for all programs π,πs,πr,π

′ ∈Π such that

• (Ks,Kr)← Init
(
(1k,sts,πs),(1k,str,πr)

)
.

For all messages m ∈ {0,1}∗, for all state sts ∈ {0,1}∗,
for all data block datas,datar ∈ {0,1}∗ such that |m| ≤
|datas| and |datas|= |datar|,

• (st′s,data
′
s)←Write

(
(sts,Ks,m,πs),datas

)
;

• (⊥,data′r)← Transfer∆
(
data

′
s,datar

)
;

•
(
(st′r, r),⊥

)
← Read

(
(str,Kr,πr),data

′
r
)
.

We say that

• Peerch is in an honest mode, if we have

– data
′
s = data

′
r and,

– πs = π ,

– ∆ is bounded.

• Peerch is in a general omission mode , if we have

– data
′
s =

{
⊥ or,
data

′
r ;

– πs = π ,

– ∆ is bounded.

• Peerch is in a ROD mode, if we have

– data
′
s =


⊥ or,
data← Replayπ or,
data

′
r ;

– πs = π ,

– ∆< ∞.

• Peerch is in a byzantine mode, if we have

– data
′
s =


φ(data

′
r) where

φ ∈ {{0,1}∗→{0,1}∗} or,
data← Replayπ or,
⊥;

– πs =

{
π or,
π ′ where π ′ ̸= π;

– ∆< ∞

6.4 Core Primitives
We define two new primitives: a) blinded channels and
b) halt-on-divergence that are one of the contributions in
this work. Informally, a blinded channel guarantees con-
fidentiality and integrity of a message over a Peer chan-
nel Peerch = (Init,Write,Transfer,Read).

Definition 6.6. (Blinded Channels.) We say that Peerch

is Blinded if for all p.p.t adversaries A we have:

Pr[ExpEXA ,Peerch
(λ ) = 1]≤ 1

2
+negl(λ ),and,
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Pr[ExpPrivA ,Peerch
(λ ) = 1]≤ 1

2
+negl(λ ),and,

Pr[ExpAuthA ,Peerch
(λ ) = 1]≤ negl(λ ),

where ExpEX
A ,Peerch

(λ ), ExpPriv
A ,Peerch

(λ ),

ExpAuth
A ,Peerch

(λ ) are:

ExpEX
A ,Peerch

(λ ):

• two parties generate keys Ks and Kr such that
(Ks,Kr) ← Init

(
1k,π

)
. The entire interaction be-

tween both of the parties is saved in a transcript T ;

• compute b $← {0,1}, if b = 0, then output

K = (Ks,Kr)
$← {0,1}k, otherwise output K =

(Ks,Kr)← Init
(
1k,π

)
.

• Given K and T , A outputs b′ and wins if b′ = b.

ExpPriv
A ,Peerch

(λ ):

• generate keys Ks and Kr such that (Ks,Ks) ←
Init

(
1k,π

)
;

• A has access to Owrite(Ks,.)(.) and O read(Kr ,.)(.);

• A chooses two equal-length messages m0 and m1;

• compute Write
(
(sts,Ks,mb,π),datas

)
where b $←

{0,1}, and output data;

• A has again access to Owrite(Ks,.)(.) and
O read(Kr ,.)(.);

• A outputs b′, if b′ = b, the experiment outputs 1,
and 0 otherwise.

ExpAuth
A ,Peerch

(λ ):

• generate keys Ks and Kr such that (Ks,Kr) ←
Init

(
1k,π

)
;

• A has access to Owrite(Ks, .). A queries a polyno-
mial number of messages m and eventually outputs
ct, we denote by Q the set of all queries that A sent
to the oracle;

• Given ct, Owrite(Ks, .) outputs r. If m /∈Q and r ̸=⊥.
A outputs 1.

Attaching a program π while defining a Peerch enables
us to introduce the halt-on-divergence primitive.

Theorem 6.1. Assuming that PeerChsgx is a Blinded chan-
nel, then Peerch in byzantine is equivalent to Peerch in
ROD mode.

Let SKE = (Gen,Enc,Dec) be a private encryption scheme,
MAC = (Gen,Auth,Vrfy) be a message authentication code,
KeyEx a key exchange algorithm, and H be a hash function.
We define PeerChsgx = (Init,Write,Transfer,Read) as follows:

• Init
(
(1k,sts,π),(1k,str,π)

)
:

1. Enclaves and Enclaver fetch the hardware-
embedded private keys sks,skr from sts,str , re-
spectively;

2. compute (key1,key2)← KeyExπ

(
sks,skr

)
;

3. Enclaves outputs Ks =
(
key1,key2

)
and Enclaver

outputs Kr =
(
key1,key2

)
.

• Write
(
(sts,Ks,m,π),datas

)
:

1. parse Ks =
(
key1,key2,sks

)
;

2. set (st′s,val)← π(sts,m)

3. compute ct1 = SKE.Enc(key1,⟨val,H(π)⟩) and
ct2 =MAC.Auth

(
key2,ct1

)
;

4. set datas = (ct1,ct2)

5. Enclaves outputs st′s and OSs outputs data′s =
datas.

• Transfer
(
data

′
s,datar

)
:

1. OSr sets datar = data
′
s;

2. OSs outputs ⊥ and OSr outputs data
′
r = datar .

• Read
(
(str,Kr,π),data

′
r
)
:

1. parse Kr =
(
key1,key2,skr

)
and data

′
r =

(ct1,ct2);

2. if MAC.Vrfy
(
key2,ct1

)
:= ct2 and str ̸= ⊥,

Enclaver computes

– ⟨r1, r2⟩= SKE.Dec(key1,ct1);
– if r2 = H(π), then compute (st′r, r) ←

π(str, r1), output (str,⊥) otherwise.

3. if MAC.Vrfy
(
key2,ct1

)
̸= ct2 or str = ⊥,

Enclaver outputs r =⊥ and st′r = str

Figure 4: PeerChsgx: SGX-based Peer channel.
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6.5 Implementation

With numerous agent frameworks and launched agents,
we need a robust and scalable framework for manag-
ing cross-agent communication, featuring comprehen-
sive credit management, rate limiting, and error han-
dling.

AUTONOME’s Cross-Agent Routing framework aka
CAR is designed for this purpose, which is also protected
by the properties in Section 3.1. It consists of the follow-
ing modules:

Registry System. CAR has a registry system designed
to help discover agents. This module allows agent and
agent builders to register their agent with AUTONOME’s
registry service. The registry process involves declaring
the framework used to build the agent, any supported
APIs and other metadata. Once an agent is registered
with the service, it can request registry information of
any other agent.

Message Queue System The system comes with a mes-
sage queuing system designed to facilitate efficient and
reliable communication between services by managing
message flow asynchronously. It enables async process-
ing, ensuring non-blocking message handling, which im-
proves system performance and responsiveness. The sys-
tem supports configurable retries, allowing customizable
retry attempts and delays to handle transient failures ef-
fectively. With a priority queue, messages can be pro-
cessed based on their importance, ensuring that critical
tasks are handled first. Additionally, the system incor-
porates error recovery mechanisms, providing compre-
hensive error handling and recovery strategies to main-
tain message integrity and system stability. This ensures
smooth, resilient, and scalable message processing in
distributed applications.

Communication Manager. A Communication Manager
is a centralized system designed to efficiently manage
and route messages between agents. It features cen-
tral routing, ensuring all messages are directed through
a unified system for seamless communication. The agent
registry enables dynamic registration and management
of agents, allowing for real-time updates and scalabil-
ity. With conversation tracking, the system maintains
a complete history of interactions, ensuring continuity
and providing valuable insights. Additionally, it enforces
limit monitoring, managing credit usage and rate limits
to prevent overuse and ensure fair resource allocation.
This makes the Communication Manager essential for
maintaining structured, efficient, and controlled messag-
ing workflows.

Agent Adapters. Agent Adapters serve as a flexible in-
terface for integrating various agent types into a system.
With an extensible design, they allow seamless integra-

tion of new agents, ensuring adaptability as requirements
evolve. The translation layer standardizes message for-
mats, enabling smooth communication between differ-
ent agent types and systems. Response handling ensures
that all agent replies are processed uniformly, maintain-
ing consistency and reliability. Additionally, robust error
management mechanisms help detect, log, and resolve
issues efficiently, ensuring stable and uninterrupted agent
interactions. This makes Agent Adapters crucial for scal-
able, interoperable, and resilient system architectures.

Credit Management System. CAR has a credit man-
agement system designed to efficiently monitor and con-
trol the allocation of credits to agents. It provides real-
time credit tracking, ensuring that agents’ credit balances
are always up to date. The system employs atomic oper-
ations, meaning credit reservations and consumption are
thread-safe, preventing inconsistencies in multi-threaded
environments. Furthermore, to maintain financial stabil-
ity, it includes overdraft prevention, automatically ver-
ifying credit availability before approving transactions.
Additionally, the system is built for concurrent support,
allowing multiple users to perform credit-related actions
simultaneously without conflicts or errors. This ensures
reliability, accuracy, and security in managing credits
across various transactions.

1
2 Initialize the CAR Client
3 import { CARClient } from ’car-framework-

react’;
4
5 const client = new CARClient({
6 endpoint: ’https://your-api.com’,
7 defaultTimeout: 30000,
8 maxRetries: 3,
9 });

1
2 Register an Agent
3 await client.registerAgent({
4 id: ’agent-1’,
5 name: ’Processing Agent’,
6 type: ’processor’,
7 endpoint: ’https://agent-endpoint.com’,
8 maxCredits: 1000,
9 rateLimitWindowMs: 60000,

10 maxRequestsPerWindow: 100,
11 });

1 Send Messages
2 await client.sendMessage({
3 type: ’request’,
4 target: ’agent-1’,
5 content: {
6 action: ’process’,
7 data: {
8 /* ... */
9 },

10 },
11 cost: 1,
12 });
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Configuration

1 CAROptions
2 interface CAROptions {
3 endpoint?: string; // API endpoint
4 defaultTimeout?: number; // Default request

timeout
5 maxRetries?: number; // Max retry attempts
6 retryDelay?: number; // Delay between retries
7 authToken?: string;
8 }

7 Conclusion
AUTONOME provides several key modules to address the
main pitfalls of the agentic-web. The proposed frame-
works and solutions are both model-agnostic and agent-
framework agnostic and can pave a path for a trustwor-
thy, robust and interoperable agentic-world.
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